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Long axisymmetric liquid zones are subject to axial temperature gradients which 
induce steady viscous flows driven by thermocapillarity . The approximately parallel 
flow in a cylindrical zone is examined for linearized instabilities. Capillary, surface- 
wave and thermal modes are found. Capillary breakup can be retarded or even 
suppressed for small Prandtl number and large Biot number B, which measures heat 
transfer from the liquid to the surrounding atmosphere. In the limiting case B+ co 
the zone becomes an isothermal jet subject to axial ‘wind stress’ on its interface. It 
is then possible to suppress capillary breakup efrtirely so that one can maintain long 
coherent jets. 

1. Introduction 
It has been known since the time of Rayleigh (1879) that circular static inviscid 

liquid jets are unstable to axisymmetric disturbances having small axial wavenumber. 
The same instability is present in viscous jets (Chandrasekhar 1961). Observation has 
shown that this capillary instability, driven by surface-tension forces on the jet 
interface, leads to the breakup of the jet into droplets. 

This knowledge has been essential for many applications ranging from the design 
of sprays to the design of inkjet printers. The behaviour of liquid bridges can be the 
controlling step in foam mechanics and multiphase displacement in the flow through 
porous media. In these cases the surhce tension might not be constant but may 
depend on phase concentration or temperature. The containless processing of single 
crystals in the float-zone configuration involves the melting of a zone in a solid rod 
and its recrystallization. The liquid zone is a non-isothermal liquid bridge subject to 
axial temperature gradients. 

A number of experimental observations (Chun & Wuest 1978, 1979; Schwabe et al. 
1978) have documented the existence of steady flows generated by thermocapil- 
larity. Here fluid flows from hot toward cold on the interface and returns along the 
axis due to the presence of endwalls on the zone. This flow can be approximately a 
parallel flow with a cylindrical interface (Xu & Davis 1983). The study of the 
instability of this flow is the object of the present work. Clearly, capillary instability 
(Rayleigh 1879; Chandrasekhar 1961) is possible. Surface-wave (Smith & Davis 
19833) and thermal (Smith & Davis 1983a) instabilities should be possible. New 
modes may appear. We wish to identie these and so determine the onset of 
oscillations that indicate a transition from steady flow to travelling-wave instabilities. 
The origin of these oscillations is currently the subject of considerable discussion. In 
an attempt to study possible instability mechanisms without the technical complic- 
ations of involved basic states, Smith & Davis (1983a, 3) have examined planar layers 
having surface-wave and thermal instabilities respectively. Xu & Davis (1984) have 
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examined thermal modes on axisymmetric zones in which surface deformation is 
absent. 

I n  the present work we wish to examine liquid zones subject to  axial temperature 
gradients which induce steady axial flows that are susceptible to time-periodic 
instabilities. Among the important results that  emerge from this analysis is the fact 
that capillary instabilities can be greatly retarded or even suppressed by surface-wave 
instabilities (Smith & Davis 1983 b )  that  couple surface deflection and the under- 
lying shear. This is particularly effective for small Prandtl number and large Biot 
number B. B measures the heat transfer from the liquid into the surrounding gas. In  
the limit B-t  00 we have an isothermal jet subject to  a constant ‘wind stress’ T (equal 
to  the surface-tension gradient). For T large enough the surface-wave instabilities 
(Miles 1960; Smith & Davis 1982) may eradicate completely the tendency for 
capillary breakup. Thus very long coherent zones can be produced. These zones are 
subject to the surface-wave instabilities that might lead to finite-amplitude permanent 
waves, but are not expected to lead to  breakup. 

2. Formulation 
Consider an infinitely long axisymmetric liquid bridge bounded laterally by a free 

surface of mean radius a. The bridge is composed of an incompressible Newtonian 
liquid having viscosity p, density p, specific heat c p ,  thermal conductivity k and unit 
thermal surface conductance h. We write v = p / p  and K = k/pc,. The surface tension 
on the interface is a. 

The bridge, shown in figure 1, is described using a cylindrical coordinate system 
( r ,  6,  z) with the z-axis coinciding with the axis of the bridge; the corresponding 
velocity components are (u, v, w). 

A constant temperature gradient dT/dz = - 6 ,  b > 0, is imposed along the axis of 
the bridge. The surface tension varies linearly with temperature : 

where T, is the temperature of the interface a t  z = 0, say. Here 

y=--1 d a  > o  
dT T-To 

gives the rate of change of surface tension with temperature T. 
We scale the governing equations consistent with isothermal capillary instabilities 

of a liquid using the following units: length - a, speed - w** = (ao/pa)i, 
pressure - Bola, temperature difference T--T, - ba, surface tension - uo and 
time - (pa3/a0):. In addition to the velocity scale w**, appropriate capillary breakup, 
there is another associated with thermocapillarity, viz w* = yba/p (see e.g. Sen & 
Davis 1982). 

This choice of scaling, consistent with capillary instabilities, supposes that the zone 
is long enough to  be susceptible to such breakups and that thermocapillarj effects 
are ‘superposed’ on these. Xu & Davis (1984), in considering convective modes 
without interfacial deformation, try to isolate effects in shorter zones where breakup 
is forbidden and only the ‘weaker’ thermocapillary effects are present. Thus they use 
different scales for speed, pressure and time. I n  particular, their choice of pressure 
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FIQTJRE 1. Sketch of the basic-state jet with the thermocapillary-induced axial-velocity profile. 

scale yb reflects their view that the large mean capillary effects, scaled on pressure 
a,/a, should not be effective when breakup is forbidden. 

As a result of the scaling, the following non-dimensional groups emerge: 

( 2 . 3 ~ )  

(2 .3b)  R --- Paw, mba2 
P Pa , B -  

(2 .3c ,d)  

The parameter A!$ is the Reynolds number of capillary instabilities, and measures 
the influence of mean surface tension. The Reynolds number R,  measures the steady 
thermocapillary flow driven by the imposed axial temperature gradient. P is the 
Prandtl number and B is the surface Biot number that measures heat transfer from 
the liquid to the adjoining gas. 

In  terms of non-dimensional quantities, the governing equations are Navier-Stokes. 
continuity and energy: 
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(2 .4d )  
1 1  
r r  

ur+-u+-vo+wz = 0, 

(2 .4e )  
1 
r 

T,+uT,+-vT~+wT, 

where subscripts denote partial differentiation. 

and thermal boundary conditions : 
On the interface at r = R(0, z, t )  we have the kinematic, shear-stress, normal-stress 

( 2 . 5 ~ )  
1 
r 

u = R,+-vR,+wR,, 

+'( 2 

1 1 
r3 r 

-R,(w, + Uz) +-R;(u + ve) +'Ro R, ( vz +;we) + Ri w,} = K[  1 -S-lRB T], (2 .5d )  

where the curvature K satisfies 

K = [R2( 1 + R:) + Ri1-t (RR,,(R2+ RZ) + 2Re R,(Re R,- RR,,) 

-( l+R:) (R2+2Ri-RRes)}, (2 .5e )  

I ( 2 . 5 f )  
1 

( 1  + 4 Ra + RE)' { T;-p Re TO- R, T,  + B( T -  T,) = 0. 
r 

Equation ( 2 . 5 ~ )  is the kinematir: condition, (2 .5b,  c )  give the thermocapillary 
balances : shear stresses balance the surface-tension gradients. Equations (2 .5d,  e )  
give the balance between the normal stress and the curvature times the surface 
tension. Equation ( 2 . 5 f )  balances the heat flux across the interface, where T, = T,(z) 
denotes the air temperature a t  the interface. 

Finally, all physical quantities are bounded a t  r = 0:  

IuI, I4 IWI, lpl, IT1 < a ( r  = 0). (2.6) 

3. Basic state 

as described by Xu & Davis (1983). For small capillary number Ca, 
The imposed axial temperature gradient drives a steady shear flow in the bridge 

(3.1) Ca = S-'RB -g 1 ,  
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i.e. for S % 1, this flow is nearly parallel and the zone has a nearly cylindrical interface. 
This approximate solution has the form 

(3 .2a,  b)  

p -  1+2S-'RBz, ?"-z- &PRB( 1 - Y 2 ) 2 ,  (3.2c,  d )  

- -  
U, 2) % 0, N ?#SfRB(rZ-i), 

R N 1, T,(z) = - 2 .  (3.2e3.f 

4. Disturbance equations 
All dependent variables $ are written as the sum of a steady basic state 3 and a 

disturbance 4'. These are substituted into the governing system (2 .5)  and linearized 
in primed quantities. Then the basic-state quantities, which appear in the coefficients, 
are replaced by their approximate versions (3.2).  

One term that appears in the linearized normal-stress boundary condition (2 .5d)  
is 

[ 1 - S-'RB T( 1, z)] (R' + R;, + Rie) x [ 1 + S-'RB Z] (R' + R;, + Ria). 

As argued by Smith t Davis (1983a), this term can be treated as one with constant 
coefficients as long as disturbances vary rapidly in z compared to Ca-'. This is a 
restriction on the axial wavenumber a soon to be introduced, viz 

2 Z R ~ l d  < 1. (4.1) 

In this case the term (4.1) is replaced by R'+R;,+R;#, and we neglect S-lRBz 
compared with unity. 

Having made the 'slowly varying' assumption just discussed, the linearized 
disturbance equations have coefficients depending only on r and can be analysed using 
normal modes : 

$' (r ,  8, z, t )  = &r)  ei(az+me-at), (4 .2a)  

where a and (integer) m are respectively the axial and azimuthal wavenumbers, and 
the eigenvalue 

(T = w+iv (4.2b) 

contains the growth rate Y and the angular frequency w .  In terms of these normal 
modes, the linearized disturbance system takes the form 

iaR, W,(r)+i@u 
mz 
r2 

DD,-az--- 

iaR, 
mz 
r2 

{ DD, - a2 -- - 

(4 .3a)  

(4.3b) 

iaR, W,(r)+iSb 6-R, Wi(r)& = iaS&, (4 .3c)  1 
4 

{D,D-a2--- m2 
r2 

i&PRB W,(r)+iPS' = p&RBG(T)4-P&6, (4 .3d)  
m2 
r2 

{ D, D-a2 --- 

im 
r 

D,u+-d+iazi, = 0, (4 .3e)  

a(I)+[iu-iaS-&, w,(I)]R = 0, (4.3f 1 
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and 

(4.39) 

(4.3 h) 

(4.34 

(4.3j) 

(4.3 k) 

(4.4a, b) 

(4.5) 

primes also denote d/dr. 
We shall solve the system (4.3) for general values of the parameters. Given that 

T = 0 is a singular point of the cylindrical coordinate system, we must exclude this 
point from the integration interval. We do this in two alternative ways. (i) We take 
the correct conditions valid for r = 0 and apply them at r = 6, < 1 to obtain a 
two-point eigenvalue problem. (ii) We expand all dependent variables about r = 0 
and obtain asymptotic representations that ensure regularity and give a linearly 
independent set of solutions. By applying these conditions at r = 8, < 1 we obtain 
a two-point eigenvalue problem. We find that the methods give equivalent results. 
For 6, = 0.001 or 8, = 0.01 we obtain five-place accuracy. 

Finally, given the formulation of the two-point boundary-value problem we use 
the code SUPORT written by Scott & Watts (1975,1977) to integrate the system (4.3). 
In  the system (4.3) the approximate basic state (3.2) occurs as coefficients; it is an 
adequate approximation only if Ca < 1. We must thus ensure that this inequality 
holds in all physically significant situations. 

5. Special cases 
5.1. RB = O( 1) as S+ co : the inviscid capillary jet 

In  this limit the viscosity of the fluid approaches zero, which makes thermocapillarity 
effective only in a thin free-surface boundary layer of thickness O(Sf);  the charac- 
teristic equation is regular, however. Thus we regain the inviscid characteristic 
equation associated with Rayleigh breakup (Rayleigh 1879) : 

w = 0, 

(5.1 a) 

(5.1 b)  
v = O  

where Ik is the modified Bessel function of the first kind. The result (5.1) corresponds 
to the axisymmetric mode m = 0; all non-axisymmetric modes m 9 0 correspond to 
stable disturbances, as shown by their characteristic equations 

v = 0. J 
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Note that the inviscid formulae (5.1) and (5.2) emerge as regular limits of the 
viscous characteristic equations. However, there may be eigenvalues of the viscous 
problem that have no inviscid limit. 

It is useful in what follows to  plot w and v for mode m = 0 as shown in figure 2. 
The figure v versus a is symmetric about the a-axis for S+ 00. Instability occurs only 
for m = 0 and for a in the range (0, a,), where a, is the cutoff wavenumber: 

a, = 1 (S-tco).  ( 5 . 3 ~ )  

The maximum growth rate vM occurs for a = aM,  the maximizing wavenumber : 

a M  x 0.69, VM z 0.34 (8+00). (5.3b) 

Note that a = 0 and a = 1 are branch points of the characteristic equation for mode 
m = 0. 

We shall call the branch m = 0, 0 < a < a,, v > 0 the characteristic equation of 
the capillary mode W e ) .  We shall say that the surface-wave mode Wi-) corresponds 
to the branch m = 0, a, < a < 00, w < 0, while the remainder of the mode m = 0 is 
called the hydrodynamic mode Wi+). I n  the limit S + m ,  Wi+) and Wi-) are neutral 
in the range a, < a < co. This classification will be explained later. 

5.2. R, = 0, S < 00 : the viscous capillary jet 

In  this limit we regain the result for the viscous isothermal capillary jet (Chandrasekhar 
1961): 

where 82 = a2 - ia&. (5.4b) 

Equations (5.4) correspond to the mode m = 0, and all m + 0 modes correspond 
to stable disturbances. 

Figure 2 shows w and v for various values of S. The point a = a, corresponds to  
the maximum value of wavenumber at which w = 0 (see figure 2a) and equivalently 
the a at which the mode m = 0 has its (negative) growth rate v split (see figure 2 a ) .  
The points a = 0 and a = a, are branch points of the dispersion relation, and again 

a, = 1 ( S <  a). 

Note that aM increases as S increases, so that smaller viscosity corresponds to shorter 
maximizing waves. Also note that a, decreases with increasing values of S. Given 
that the viscosity is non-zero, the surface-wave mode Wi-) and the hydrodynamic 
mode W;+) both decay (and have equal decay rates) for a 3 a,. 

5.3. B+m, P ,  R,  = O(1): the ‘ J l y i w j e t ’  
This is the general dynamical isothermal problem in which the basic flow field is 
established by external forces (e.g. ‘wind ’ blowing over the cylinder with a prescribed 
shear stress 7 equal to the imposed thermocapillary gradient yb). 

I n  the limit B+ 00, (4.3j) yields that P(l) = 0, so that thermal perturbations vanish 
on the interface and the thermal field does not influence the hydrodynamic instability. 
Here R, is the measure of the ‘wind stress’ (Smith & Davis 1982).t 

t As noted by Smith t Davis (1982), the ‘slowly varying’ approximation discussed in $4 is not 
required for such isothermal cases. 
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FIQURE 2. (a) Growth rate Y versus axial wavenumber a for the isothermal jet for the mode m = 0 
for R, = 0 and various S .  ( b )  Frequency o versus axial wavenumber a for the isothermal jet for 
the mode m = 0 for R ,  = 0 and various 8. 
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FIQURE 3. Neutral curves for the isothermal jet with S = lo* 
including the modes WP),  Wi-) and 

For small R,, regular perturbation theory gives the cutoff conditions for mode 

a, - 1+0.1300R&S-1+O(R4,), (5.5a) 

W ,  - - o.3759RB8-4 4- O(R&), (5.5b)  

where w, = @(a,). Figure 3 shows the results for a, as a function of R, for S = lo4 
from numerical computations compared with the result (5.5a), the latter being 
accurate for R, < 100 (i.e. R B R 1  < 1). 

Figure 4 shows o and u for S = 104. Note that, since R, + 0, the decay rates for 
Wh+) and W$-) differ in the range a, < a < 00. Further, there is a smooth transition 
from W r )  to Wh-) as a incre-s. 

As R, increases from zero to 100, the cutoff wavenumber a, increases monotonically. 
However, when R, is somewhat larger than 200 the curve of v versus a dips below 
the axis for a < a,, as shown in figure 4(a) ,  thus producing a sequence of three 
crossings: say al, a2 and a,, the largest of these. The capillary mode W p )  is confined 
to a small range of a ,  0 < a < a,, and aM decreases as R,  increases. Thus the presence 
of the basic-state shear flow inhibits the Rayleigh capillary breakup ; longer coherent 
zones are thus possible if there is@ in the zone. 

The presence of the background shear is also responsible for the appearance of a 
new instability, attributable to coupled shear/interface effects (Miles 1960; Smith & 
Davis 1982). This is seen in figure 4 (a) ; when the three crossings are present a second 
local maximum of u appears in (a2, a,) at a = ah > 1. For example, from figure 4(a)  

m = O :  
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FIQTJRE 4. (a) Growth rate v versus axial wavenumber a for the isothermal jet for the mode m = 0 
for S = lo4 and various R,. ( b )  Frequency w versus axial wavenumber a for the mode m = 0 for 
S = lo4 and various R,. 
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for R, = 200 we get aM = 0.53, ah = 1.0, vM = 0.19 and v& = 0.84 x lop2. The zone 
would be unstable to shear waves emerging from mode Wi-), these waves propagating 
in the direction opposite to the imposed surface flow. This is consistent with the small-a 
analysis of Smith & Davis (1982) on planar isothermal sheared layers having 
return-flow profiles. Notice also that the frequencies of these surface-wave modes are 
substantially larger than those of the capillary mode as shown in figure 4(b ) .  The 
presence of this hydrodynamic instability makes the longer zone possible, though the 
resulting configuration is unsteady. Notice in figure 4 (a) for, say, R, = 500 that W p )  
has a second neutral point, so that there exists another neutral branch in the range 
0 < a < 1. This is shown in figure 3 for mode m = 0. 

We now turn to mode m = 1. Since R, =+ 0 the non-axisymmetric mode m = 1 is 
sometimes unstable, the neutral curve being shown in figure 3 emerging from the 
origin. We see in figure 3 for 0 < a < 1 that the m = 0 mode W?) dominates, for 
1 < a < a* x 2.0 the m = 0 surface-wave mode Wi-) dominates, while for a > a*  the 
m = 1 surface-wave mode Wl-) is most dangerous. 

6. Thermocapillary instabilities 
In analysing non-isothermal systems we must recall two restrictions on the physical 

validity of our theory. First, we have assumed a nearly cylindrical zone, which is 
guaranteed by (3.1), a restriction that applies even for the isothermal ‘flying’ jet of 
$5.3. Secondly, we must enforce the ‘slowly varying’ restriction (4.1), which limits 
the wavenumber for the validity of the theory, viz 

a % 27cR,S-’. (6.1) 
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FIGURE 6. (a) Growth rate v versus axial wavenumber a for the non-isothermal jet for the mode 
m = 0 for S = lo’, P = 0.1, B = 1 and R, = 10. ( b )  Frequency w versus axial wavenumber a for 
mode m = 0 for S = lo4, P = 0.1, B = 1 and R ,  = 10. 
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FIGURE 7 (a)-(d). For caption see next page. 
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FIQURE 7. (a) Growth rate v versus axial wavenumber a for the non-isothermal jet for the mode 
m = 0 for S = lo4, P = 0.1, B = 1 and R, = 40. ( b )  Frequency w versus axial wavenumber a for 
the non-isothermal jet for the mode m = 0 for S = lo4, P = 0.1, B = 1 and R,  = 40. (c) Growth 
rate v versus axial wavenumber a for the non-isothermal jet for the mode m = 0 for S = lo4, P = 0.1, 
B = 1 and R, = 100. (d) Frequency w versus axial wavenumber a for the non-isothermal jet 
for the mode m = 0 for S = lo4, P = 0.1, B = 1 and R ,  = 100. (e) Growth rate v versus axial 
wavenumber a for the non-isothermal jet for the mode m = 0 for S = lo4, P = 0.1, B = 1 and 
R ,  = 200. (f) Frequency w versus axial wavenumber a for the non-isothermal jet for the mode 
m = 0 for S = lo4, P = 0.1, B = 1 and R, = 200. 

I n  the discussion to  follow we ignore the restriction (6.1) in order to  examine fully 
the complicated structure of the neutral curves as parameters vary and to test our 
numerics against asymptotic formulae for small a. However, we only infer physical 
content when the inequality (6.1) is enforced. 

We now turn to cases B < 00 and RB 9 0. For B, P, R, = O(1) there are long-wave 
instabilities a+O. We find by regular perturbation theory that 

w+iv - f ( ~ R B S - ’ a ) f ( l - i ) + : P S - f R , B - ’ ~ + O ( u ~ ) ,  (6.2) 

so that the frequency w ,  which is zero for S+oo or RB+O, splits near a = 0 into a 
pair of curves with a vertical tangents as shown in figure 5 ( b ) .  Likewise, near a = 0 
the growth rate splits into two curves with vertical tangents near a = 0 as shown 
in figure 5 (a), which corresponds to the case S = 100 and B = 1. For RB = 5 ,  (3.1) 
gives Ca = 0.05. The numerical computation agrees with the form (6.1) to  within 
5 x lop4 for the case P = 0.1, S = 100, RB = 10, B = 1, a = 0.01. Figure 6 shows the 
frequency w and growth rate v corresponding to  the case S = lo‘, P = 0.1, B = 1 and 
R, = 10. Both figures 5 and 6 show that, if the values of P and R, are not too large, 
then the modes Wg)  and Wl;) are smoothly connected, consistent with the dynamic 
isothermal case. However, as either P or R, becomes larger, the situation changes. 
First of all, the modes W p )  and Wi-) split as shown in figure 5 for the case P = 5, 
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FIGURE 8. Neutral curves near a = 1 for the non-isothermal jet for 
the mode W p )  for S = lo4 and various P and B.  

B = 1, S = lo2 and R, = 5. This splitting process is also seen in figures 6 and 7, which 
correspondtothecasesP = 0.1,B = 1,s = 104,RB = 10,and40,100,200respectively. 
Figure 6 shows that as RB is increased from 0 to 10 the characteristic curve of mode 
Wi+) will give birth to an additional branch Wi+)' while the characteristic curve of 
mode Wi-) will also have a sub-branch Wi-)'. As RB increases further, the branch W r ) '  
separates further from Wi+) (as shown in figures 6a,7a ,c ,  e ) ;  however, the branch 
Wi-)' and the curves of Wp) and Wi-) will evolve as shown in figures 6 ( b )  and 
7 (b, d, f ). Thus the curves of modes W:) and Wi-) remain separated. Figure 8 shows 
the neutral curve near a = 1 of W p )  for various values of B and P. Figures 9 and 10 
show the neutral curve near a = 1 of Wi-) for various values of B and P. Furthermore, 
for a fixed RB as P increases, the mode Wi+) may become unstable as shown in 
figures 11 and 12, which correspond to  the cases S = lo4, B = 1, R, = 100, P = 1 and 
P = 5 respectively. Note that the instability of Wi+) is a new instability caused by 
increasing Marangoni number MB = PR, and does not exist in the isothermal 
hydrodynamic case. Hence it is a hydrothermul instability, which differs from the 
instabilities identified by Smith & Davis (1983a, b) .  Figure 13(a) shows the neutral 
curves of this instability as a function of P; figure 13 (b) shows the Reynolds number 
R, of the neutral wave with a = 1 versus P and B. Finally, figure 14 shows for the 
mode W p )  that the maximum growth rate v M  and maximizing wavenumber aM 
decrease with increasing RB ; these also increase with S. Thus the presence of the shear 
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FIQURE 9. Neutral curves near a = 1 for the non-isothermal jet for 
the mode Wh-) for S = lo4, P = 0.1 and various B.  
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FIQURE 10. Neutral curves near a = 1 for the non-isothermal jet for 
the mode Wh-) for S = lo", B = 1 and various P. 
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FIGURE 1 1 .  Growth rate v versus axial wavenumber a for the non-isothermal jet for the mode 

m = 0 for S = lo4, P = 1, B = 1 and R, = 100.  
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FIGURE 12. Growth rate v versus axial wavenumber a for the non-isothermal jet for the mode 
m = O f o r S = 1 O 4 , P = 5 , B = 1 a n d R , = 1 0 0 .  
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FIQURE 13. (a) Neutral curves near a = 1 for the non-isothermal jet for the mode W$+) for S = 104 
and B = 1 for various P.  ( b )  Neutral points at a = 1 versus P for the non-isothermal jet for the 
mode W&+) for S = lo4 and B = 0 or B = 1. 
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FIQURE 14. Maximum growth rate v M  and maximizing wavenumber aM versus R, for the 
non-isothermal jet for the mode W p )  for S = lo4 for various P and €3. 
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gives rise to new instabilities that suppress the capillary instability, allowing larger 
zones to persist. Relatively speaking, vM and aM are not very sensitive to variations 
in the thermal parameters P and B if RB < 100. For example, aM and vM change by 
0.58 and 1.39% as B varies from unity to 00 for S = lo4, P = 0.1 and RB = 100. 
Similarly aM and vM change by 2.27 and 2.32 yo as Pvaries from 10-1 to 10 for S = lo4, 
B = 1 and R, = 100. 

For the non-axisymmetric mode m = 1 the eigenvalues are quite close to those of 
the general isothermal case. However, there is a non-uniform limit for a+O, and the 
growth rates for a+O differ between the isothermal and non-isothermal cases. Wi-) 
grows while Wi+) decays for the isothermal case and a+O. Wl-) decays while W y )  
grows for the non-isothermal case and a+O. Figures 15-21 show the neutral curves 
for different cases and ranges of a. The neutral curve of mode W?) seems to be 
confined to very low wavenumbers or very high Reynolds numbers RB. We could not 
find it elsewhere. 

Therefore, in summary, there exist several important instability mechanisms or 
unstable modes in the thermocapillary problem : 

(I) capillary mode W p ) ;  
(11) surface-wave modes Wi-) and Wf) ;  

(111) thermal mode Wi+). 

Figures 17-21 show that, when P is small, modes I1 are important, whereas when P 
is large mode I11 emerges in the range 1 < a < 3. In all cases, mode I, as long as it 
exists, dominates small a. 

At this stage, given the structure we have found for the instability modes, we must 
enforce the inequality (6.1); there is physical content only in this range. 

7. Discussion and conclusions 
We consider an infinitely long capillary jet of radius unity subject to an axial 

temperature gradient of unit magnitude. Thermocapillarity causes an approximately 
parallel axial flow driven on the interface by surface-tension gradients and returning 
along the axis. 

The instabilities of this dynamic state are governed by four parameters : RB, S, P 
and B. The Reynolds number of the thermocapillary flow is RB, while S-4 is the 
Reynolds number of the (isothermal) capillary jet; it measures the mean surface 
tension. P is the Prandtl number of the liquid. B is the Biot number that measures 
heat transfer from the liquid jet into the atmosphere. 

In the limit B+ 00 all thermal perturbations on the liquid-gas interface vanish. 
Thus all instabilities are isothermal in nature (and are independent of P). The model 
presumes that the interface is nearly cylindrical, so that surface tension must be large 
enough according to the inequality (3.1). The physical system is thus equivalent to 
an isothermal viscous jet subject to wind stress 7 equal to the thermocapillary 
gradient yb of the basic state. This ‘flying jet’ is susceptible to both capillary 
instabilities (Rayleigh 1879) as well as those generated by interactions of the 
underlying shear with interface deformations (Miles 1960; Smith & Davis 1982). For 
RB = 0, there is only the capillary mode W p ) ,  which grows only for the case m = 0 
in the range 0 < a < a, = 1. As RB increases, the growing Wp)  modes travel slowly 
in the direction opposite to the surface flow. The cutoff axial wavenumber a, increases 
with RB. The capillary mode is accompanied by a surface-wave mode Wi-), whose 
branch is connected to that of WF) but is distinguished by the group velocity Cg. There 
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FIGURE 15. Neutral curves for the isothermal jet (B  = co) for the mode Wi-) with S = lo4 and 
the non-isothermal jet for the mode Wi-) with B = 1 ,  P = 0.1 and AS' = lo4. 
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FIGURE 16. Neutral curves for the non-isothermal jet for the mode Wi-) for S = lo4 with 
(i) B-tco, (ii) B = 1 ,  P =  0.1, (iii) B = 0, P = 0.1 and (iv) B = 0, P = 1.5. 
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FIQURE 17. Neutral curves for the non-isothermal jet for S = lo4, B = 0 and 
P = 0.1 and for the isothermal jet (B  = 00) for S = lo'. 
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FIGURE 18. Neutral curvea for the non-isothermal jet for S = lo4, B = 1 and P = 0.1. 
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FIGURE 19. Neutral curves for the non-isothermal jet for S = lo4, B = 1 and P = 1.  
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FIGURE 20. Neutral curves for the non-isothermal jet for S = lo4, B = 1 and P = 5. 
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FIGURE 21. Neutral curves for the non-isothermal jet for S = lo“, B = 0 and P = 0.1 

is a maximum of dC,/da at  a = a,; we call W g )  that for a < a, and Wi-1 that for 
a > aB. 

As RB is increased, a, increases, but the maximizing wavenumber aM and its 
corresponding maximum growth rate vM decrease. Finally, for S = lo4 and, say, 
RB = 500, the v versus a curve exhibits three zeros as shown in figure 4. For 
0 < a < a,, say, there is a capillary instability. For a1 < a < a2, say, no modes grow. 
For a2 < a < a, there is a surface-wave instability. Thus the basic-state flow 
suppresses the capillary instability into a small range 0 < a < a , with a1 decreasing 
with RB, but allows a new surface-wave mode (Miles 1960; Smith t Davis 1982). 
Owing to the basic-state flow, 8 very long liquid jet can persist (without breaking 
up into droplets) though it has fast instability waves on i t  propagating in the direction 
opposite to the surface flow. Even when R, = 200, the neutral curve exhibits two 
local maxima indicating the presence of the two instabilities. All these modes are 
axisymmetric (m = 0). When a is large enough, the m = 1 mode Wi-) for surface-wave 
instabilities becomes predominant. Figure 3 shows that this occurs for a > 2.0 
(approximately) for S = lo4. 

When B < 00 thermal perturbations are present on the interface, the Prandtl 
number P appears in the stability criteria and new thermal instabilities become 
possible. In  addition to the restriction (3.1), we now require that the variables vary 
slowly along the zone. Thus the restriction (4.1) limits the axial wavenumber to be 
‘not too small’. When B is not too small and P is not too large the modes ‘m = 0 
resemble those of the ‘flying jet ’. W g )  is smoothly connected to Wi-) to a = a,. Again 
W g )  propagates slowly while Wi-) propagates rapidly. As either RB or P increases, 
the modes W g )  and Wi-) split; the neutral curve for W g )  passes through the point 
a = 1, RB = 0 and depends strongly on P and B as shown in figure 8. The neutral 
curve of Wi-) does not pass through the point a = 1 ,  R,  = 0, and for short waves 
(e.g. a > 1.25 for S = lo4, B = 1, P = 0.1) is not strongly dependent on P and B as 
shown in figures 9 and 10. 
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As in the case of the isothermal ( B j c o )  ‘flying jet’, capillary instabilities can be 
suppressed by the action of the basic-state flow and its instabilities. Figure 14 shows 
that this suppression is most significant for B large and/or P small. For example, 
if P = 0.1, B = 1 and S = lo4 the capillary instability is completely suppressed if 
R, > 400, though the restriction (4.1) prevents the analysis from being valid for a+O. 
All we can say is that some degree of suppression exists. 

As P increases and B decreases, a new instability arises. The mode Wi+), a function 
of P and B, becomes less stable as B is decreased from infinity, and finally becomes 
unstable for P large enough, B small enough and RB large enough. This represents 
a thermal instability resulting in waves that travel in the direction opposite to the 
surface flow. 

There are also two spiral modes m = 1 for Wi-) and W$+) which are rapidly 
travelling waves in the directions opposite to and along the surface flow respectively. 
These have group velocities similar to their isothermal counterparts. However, for 
a << 1,  Wi+) is unstable while Wi-) is stable. For larger a (say a > 2) Wi-) is close 
to that of the isothermal ‘flying jet’. 

In summary then, we have the following behaviours. 
(i) The capillary mode Wg)  is a wave that travels slowly along the axis opposite 

to or along the surface flow, and is directly related to the capillary instability of static 
cylinders studied by Rayleigh (1879) and Chandrasekhar (1961). This mode can be 
suppressed for B large and/or P small by instabilities of the basic-state flow driven 
by thermocapillarity. As a special case, the limit B+co retrieves the ‘flying jet’ 
having the same property. 

(ii) The surface-wave mode Wi-) is a wave that travels rapidly along the axis 
opposite to the surface flow. It is controlled by R, and is only weakly dependent on 
parameters P and B if a > 1.2, and so is the axisymmetric analogue of the instability 
identified by Miles (1960) and Smith & Davis (1982) and studied in the planar 
thermocapillary layer by Smith & Davis (1983~) .  

(iii) The thermal mode Wi+) is a wave that travels rapidly along the axis along 
the surface flow. It is controlled by the basic-state Marangoni number M ,  = PR, 
and is distinct from the instabilities identifed by Smith & Davis (1983a,b). The 
critical value of MB approaches infinity as B+co or P-tO, and becomes dominant 
for P large and B small. 

(iv) The surface-wave mode Wi-) is a spiral wave that travels along the axis 
opposite to the surface flow and in either azimuthal direction. It is controlled by RB 
and is weakly dependent on P and B. 

In conclusion, for small P, the neutral curve is made up of segments from Wg) ,  
Wi-) and Wi-). For large P the neutral curve is made up of segments from Wp)  and 
W$,+). Thus liquid bridges of finite length may be long or short, but will usually be 
subject to oscillatory instabilities of surface-wave or thermal type. 

This work was supported by the National Aeronautics and Space Administration, 
Materials-Processing-in-Space Program, Contract NAS8-33881. 
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